Package: flamingos 0.1.0.9000

Florian Lecocq

flamingos: Functional Latent Data Models for Clustering Heterogeneous Curves ('FLaMingos')

Provides a variety of original and flexible user-friendly statistical latent variable models for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time series, or more generally longitudinal data, fitted by unsupervised algorithms, including EM algorithms. Functional Latent Data Models for Clustering heterogeneous curves ('FLaMingos') are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?utf8=?&tab=repositories&q=mix&type=public&language=matlab>. The references are mainly the following ones. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2010) <doi:10.1016/j.neucom.2009.12.023>. Chamroukhi F., Same A., Aknin P. and Govaert G. (2011) <doi:10.1109/IJCNN.2011.6033590>. Same A., Chamroukhi F., Govaert G. and Aknin, P. (2011) <doi:10.1007/s11634-011-0096-5>. Chamroukhi F., and Glotin H. (2012) <doi:10.1109/IJCNN.2012.6252818>. Chamroukhi F., Glotin H. and Same A. (2013) <doi:10.1016/j.neucom.2012.10.030>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. and Nguyen H-D. (2019) <doi:10.1002/widm.1298>.

Authors:Faicel Chamroukhi [aut], Florian Lecocq [aut, trl, cre], Marius Bartcus [aut, trl]

flamingos_0.1.0.9000.tar.gz
flamingos_0.1.0.9000.zip(r-4.5)flamingos_0.1.0.9000.zip(r-4.4)flamingos_0.1.0.9000.zip(r-4.3)
flamingos_0.1.0.9000.tgz(r-4.4-x86_64)flamingos_0.1.0.9000.tgz(r-4.4-arm64)flamingos_0.1.0.9000.tgz(r-4.3-x86_64)flamingos_0.1.0.9000.tgz(r-4.3-arm64)
flamingos_0.1.0.9000.tar.gz(r-4.5-noble)flamingos_0.1.0.9000.tar.gz(r-4.4-noble)
flamingos_0.1.0.9000.tgz(r-4.4-emscripten)flamingos_0.1.0.9000.tgz(r-4.3-emscripten)
flamingos.pdf |flamingos.html
flamingos/json (API)
NEWS

# Install 'flamingos' in R:
install.packages('flamingos', repos = c('https://fchamroukhi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fchamroukhi/flamingos/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • toydataset - A dataset composed of simulated time series with regime changes.

On CRAN:

artificial-intelligencebaum-welch-algorithmcurve-clusteringdata-sciencedynamic-programmingem-algorithmfunctional-data-analysisfunctional-data-clusteringhidden-markov-modelshidden-process-regressionmixture-modelspiecewise-regressionstatistical-analysisstatistical-inferencestatistical-learningtime-series-analysisunsupervised-learning

4.95 score 6 stars 9 scripts 120 downloads 4 exports 2 dependencies

Last updated 5 years agofrom:1290eadb3b. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64NOTENov 07 2024
R-4.5-linux-x86_64NOTENov 07 2024
R-4.4-win-x86_64NOTENov 07 2024
R-4.4-mac-x86_64NOTENov 07 2024
R-4.4-mac-aarch64NOTENov 07 2024
R-4.3-win-x86_64NOTENov 07 2024
R-4.3-mac-x86_64NOTENov 07 2024
R-4.3-mac-aarch64NOTENov 07 2024

Exports:cemMixRHLPemMixHMMemMixHMMRemMixRHLP

Dependencies:RcppRcppArmadillo

A-quick-tour-of-mixHMM

Rendered fromA-quick-tour-of-mixHMM.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2019-08-05
Started: 2019-07-17

A-quick-tour-of-mixHMMR

Rendered fromA-quick-tour-of-mixHMMR.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2019-08-05
Started: 2019-07-17

A-quick-tour-of-mixRHLP

Rendered fromA-quick-tour-of-mixRHLP.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2019-08-05
Started: 2019-07-17

Readme and manuals

Help Manual

Help pageTopics
FLaMingos: Functional Latent datA Models for clusterING heterogeneOus curveSflamingos-package flamingos
cemMixRHLP implements the CEM algorithm to fit a MixRHLP model.cemMixRHLP
emMixHMM implemens the EM (Baum-Welch) algorithm to fit a mixture of HMM models.emMixHMM
emMixHMMR implements the EM algorithm to fit a mixture if HMMR models.emMixHMMR
emMixRHLP implements the EM algorithm to fit a mixture of RHLP models.emMixRHLP
A Reference Class which represents functional data.FData FData-class
mkStochastic ensures that it is a stochastic vector, matrix or array.mkStochastic
A Reference Class which represents a fitted Mixture of HMM model.ModelMixHMM ModelMixHMM-class
A Reference Class which represents a fitted mixture of HMMR model.ModelMixHMMR ModelMixHMMR-class
A Reference Class which represents a fitted mixture of RHLP model.ModelMixRHLP ModelMixRHLP-class
A Reference Class which contains parameters of a mixture of HMM models.ParamMixHMM ParamMixHMM-class
A Reference Class which contains parameters of a mixture of HMMR models.ParamMixHMMR ParamMixHMMR-class
A Reference Class which contains parameters of a mixture of RHLP models.ParamMixRHLP ParamMixRHLP-class
A Reference Class which contains statistics of a mixture of HMM model.StatMixHMM StatMixHMM-class
A Reference Class which contains statistics of a mixture of HMMR models.StatMixHMMR StatMixHMMR-class
A Reference Class which contains statistics of a mixture of RHLP models.StatMixRHLP StatMixRHLP-class
A dataset composed of simulated time series with regime changes.toydataset