Package: flamingos 0.1.0.9000
flamingos: Functional Latent Data Models for Clustering Heterogeneous Curves ('FLaMingos')
Provides a variety of original and flexible user-friendly statistical latent variable models for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time series, or more generally longitudinal data, fitted by unsupervised algorithms, including EM algorithms. Functional Latent Data Models for Clustering heterogeneous curves ('FLaMingos') are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?utf8=?&tab=repositories&q=mix&type=public&language=matlab>. The references are mainly the following ones. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2010) <doi:10.1016/j.neucom.2009.12.023>. Chamroukhi F., Same A., Aknin P. and Govaert G. (2011) <doi:10.1109/IJCNN.2011.6033590>. Same A., Chamroukhi F., Govaert G. and Aknin, P. (2011) <doi:10.1007/s11634-011-0096-5>. Chamroukhi F., and Glotin H. (2012) <doi:10.1109/IJCNN.2012.6252818>. Chamroukhi F., Glotin H. and Same A. (2013) <doi:10.1016/j.neucom.2012.10.030>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. and Nguyen H-D. (2019) <doi:10.1002/widm.1298>.
Authors:
flamingos_0.1.0.9000.tar.gz
flamingos_0.1.0.9000.zip(r-4.5)flamingos_0.1.0.9000.zip(r-4.4)flamingos_0.1.0.9000.zip(r-4.3)
flamingos_0.1.0.9000.tgz(r-4.4-x86_64)flamingos_0.1.0.9000.tgz(r-4.4-arm64)flamingos_0.1.0.9000.tgz(r-4.3-x86_64)flamingos_0.1.0.9000.tgz(r-4.3-arm64)
flamingos_0.1.0.9000.tar.gz(r-4.5-noble)flamingos_0.1.0.9000.tar.gz(r-4.4-noble)
flamingos_0.1.0.9000.tgz(r-4.4-emscripten)flamingos_0.1.0.9000.tgz(r-4.3-emscripten)
flamingos.pdf |flamingos.html✨
flamingos/json (API)
NEWS
# Install 'flamingos' in R: |
install.packages('flamingos', repos = c('https://fchamroukhi.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fchamroukhi/flamingos/issues
- toydataset - A dataset composed of simulated time series with regime changes.
artificial-intelligencebaum-welch-algorithmcurve-clusteringdata-sciencedynamic-programmingem-algorithmfunctional-data-analysisfunctional-data-clusteringhidden-markov-modelshidden-process-regressionmixture-modelspiecewise-regressionstatistical-analysisstatistical-inferencestatistical-learningtime-series-analysisunsupervised-learning
Last updated 5 years agofrom:1290eadb3b. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | NOTE | Nov 07 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 07 2024 |
R-4.4-win-x86_64 | NOTE | Nov 07 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 07 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 07 2024 |
R-4.3-win-x86_64 | NOTE | Nov 07 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 07 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 07 2024 |
Exports:cemMixRHLPemMixHMMemMixHMMRemMixRHLP
Dependencies:RcppRcppArmadillo
A-quick-tour-of-mixHMM
Rendered fromA-quick-tour-of-mixHMM.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2019-08-05
Started: 2019-07-17
A-quick-tour-of-mixHMMR
Rendered fromA-quick-tour-of-mixHMMR.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2019-08-05
Started: 2019-07-17
A-quick-tour-of-mixRHLP
Rendered fromA-quick-tour-of-mixRHLP.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2019-08-05
Started: 2019-07-17