samurais - Statistical Models for the Unsupervised Segmentation of Time-Series ('SaMUraiS')
Provides a variety of original and flexible user-friendly statistical latent variable models and unsupervised learning algorithms to segment and represent time-series data (univariate or multivariate), and more generally, longitudinal data, which include regime changes. 'samurais' is built upon the following packages, each of them is an autonomous time-series segmentation approach: Regression with Hidden Logistic Process ('RHLP'), Hidden Markov Model Regression ('HMMR'), Multivariate 'RHLP' ('MRHLP'), Multivariate 'HMMR' ('MHMMR'), Piece-Wise regression ('PWR'). For the advantages/differences of each of them, the user is referred to our mentioned paper references. These models are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?&tab=repositories&q=time-series&type=public&language=matlab>.
Last updated 5 years ago
artificial-intelligencechange-point-detectiondata-sciencedynamic-programmingem-algorithmhidden-markov-modelshidden-process-regressionhuman-activity-recognitionlatent-variable-modelsmodel-selectionmultivariate-timeseriesnewton-raphsonpiecewise-regressionstatistical-inferencestatistical-learningtime-series-analysistime-series-clusteringopenblascpp
6.18 score 12 stars 28 scripts 132 downloadsmeteorits - Mixture-of-Experts Modeling for Complex Non-Normal Distributions
Provides a unified mixture-of-experts (ME) modeling and estimation framework with several original and flexible ME models to model, cluster and classify heterogeneous data in many complex situations where the data are distributed according to non-normal, possibly skewed distributions, and when they might be corrupted by atypical observations. Mixtures-of-Experts models for complex and non-normal distributions ('meteorits') are originally introduced and written in 'Matlab' by Faicel Chamroukhi. The references are mainly the following ones. The references are mainly the following ones. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2009) <doi:10.1016/j.neunet.2009.06.040>. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F. (2015) <arXiv:1506.06707>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. (2016) <doi:10.1109/IJCNN.2016.7727580>. Chamroukhi F. (2016) <doi:10.1016/j.neunet.2016.03.002>. Chamroukhi F. (2017) <doi:10.1016/j.neucom.2017.05.044>.
Last updated 5 years ago
artificial-intelligenceclusteringem-algorithmmixture-of-expertsneural-networksnon-linear-regressionpredictionrobust-learningskew-normalskew-tskewed-datastatistical-inferencestatistical-learningt-distributionunsupervised-learningopenblascpp
5.12 score 3 stars 11 scripts 133 downloadsflamingos - Functional Latent Data Models for Clustering Heterogeneous Curves ('FLaMingos')
Provides a variety of original and flexible user-friendly statistical latent variable models for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time series, or more generally longitudinal data, fitted by unsupervised algorithms, including EM algorithms. Functional Latent Data Models for Clustering heterogeneous curves ('FLaMingos') are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?utf8=?&tab=repositories&q=mix&type=public&language=matlab>. The references are mainly the following ones. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2010) <doi:10.1016/j.neucom.2009.12.023>. Chamroukhi F., Same A., Aknin P. and Govaert G. (2011) <doi:10.1109/IJCNN.2011.6033590>. Same A., Chamroukhi F., Govaert G. and Aknin, P. (2011) <doi:10.1007/s11634-011-0096-5>. Chamroukhi F., and Glotin H. (2012) <doi:10.1109/IJCNN.2012.6252818>. Chamroukhi F., Glotin H. and Same A. (2013) <doi:10.1016/j.neucom.2012.10.030>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. and Nguyen H-D. (2019) <doi:10.1002/widm.1298>.
Last updated 5 years ago
artificial-intelligencebaum-welch-algorithmcurve-clusteringdata-sciencedynamic-programmingem-algorithmfunctional-data-analysisfunctional-data-clusteringhidden-markov-modelshidden-process-regressionmixture-modelspiecewise-regressionstatistical-analysisstatistical-inferencestatistical-learningtime-series-analysisunsupervised-learningopenblascpp
4.95 score 6 stars 9 scripts 101 downloads